
APPM 2360 Project 2

Ethan Phalen, Savi Singh, Muhannad Ibrahim

April 2021

1 Introduction

In the world of social media and technology, people are taking, sharing, and
editing photos relentlessly. Our group of friends require our help in creating
an application where they can edit, compress, and manipulate specific images
in order for them to pursue a successful business idea. This is where Matlab
and our knowledge of matrices’ properties comes into play. Digital images are
composed of pixels, and we can manipulate these pixels using matrix arithmetics
and manipulating their vectors. For example, we can manipulate the identity
matrix in order to shift and rearrange pixels that alter the picture. Other
important concepts that will help our friends in their digital image application
are: grayscaling an image, changing the color of an image, and compressing an
image using the Discrete Sine Transform, which uses a decomposition of vectors
into linear sine functions to create different frequencies of an image.

2 Image Transformations

Our first task was to simply just read an image file and display the grayscale
and original image. In matlab, we accomplished this by using the ‘imread’ and
‘imagesc’ functions. In order to develop the grayscale version of the image, we
had to make a linear combination of vectors that utilized the red, green, and
blue pixel matrices. The grayscale image proved to be quite helpful, as it turns
the intensities of pixels into its own n x m matrix. This makes it very easy to
work with and manipulate because it does not have a third dimension. The
following images were a result of the ‘imagesc’ function:

1



Figure 1: Original Image Figure 2: Grayscale Image

Another important aspect of picture editing is being able to increase the
exposure of images. The rectangle image and all other images have three color
matrices that are responsible for red, blue, and green color intensities. In order
to white out the rectangle image, we added 100 to the red, blue, and green ma-
trices to give it more light because we know images have integer values ranging
from 0 to 255. This is a comparison of the whited out image versus the original
image:

Figure 3: Original. Figure 4: Whited Out

2



Here is another colored version of the rectangle image with 0 red intensity
and a blue intensity added with 80:

Figure 5: No red, plus 80 blue

3



2.1 Translations

Aside from the color intensity matrices, an image can be shifted or refigured
by changing the rows and columns around. This is done by multiplying the
image by a certain Identity Matrix. The identity matrix needs to be refigured
in the same manner as the desired new matrix. Given a 4x4 matrix A, in order
to switch the leftmost and rightmost columns, the identity matrix needs to be
altered in such a way that the left and rightmost columns are switched. Then,
this can be called matrix ‘E’. To get the new matrix, AE is the only correct
order of multiplication. Here are the following matrices:

Figure 6: matrix E will swap first and last columns

4



The square matrix image shift is also applicable to non-square matrices such
as the images in this project. By multiplying by the correct transformation
matrix, the rectangle image was horizontally shifted:

Figure 7: Horizontal Shift

To preform a vertical shift along with a horizontal shift, we can multiply
using the same technique as before, except to implement a vertical shift, we
simply change the order of the matrix product; E1AE2 will preform both as
follows:

Figure 8: Double Shift

5



Figure 9: Horizontal Shift Figure 10: Vertical Shift

2.2 Flipping an Image

Since we’ve moved the image around, let’s now consider how we might flip the
picture over vertically, or upside down. To do this, we first see that the ”upside
down” identity matrix will flip the picture horizontally. To go vertically, we
simply multiply the other direction:

Figure 11: Original Figure 12: Flipped

In addition to flipping an image vertically, we can also transpose the color
matrices, which results in Figure 8 shown below. It appears that we can flip
the image matrix across it’s diagonal using the transpose. This also appears as
a mirror, with a rotation, since by definition we are flipping the rows with the
columns.

6



Figure 13: Spy() graph for the transformation matrix, blue is nonzeros (all ones
in this case)

Figure 14: Proof for Number 8

7



2.3 Cropping

Another thing we can do to an image is crop it, which can be done using matrix
transformations. We take the 612x612 Identity matrix and remove the ones
from the border based on how big of a crop we want, then set that equal to
our transform matrix. We then multiply tXt, where t is the transform matrix
and X is the double version of the color matrix (We do this separately for each
color). We have to multiply by the transformation matrix twice, once on each
side, in order to take the top and bottom borders and left and right borders
respectively.

Figure 15: Spy() Graph of Transform Matrix

Figure 16: Image With Border

8



3 Image Compression

Matrices are useful when manipulating the look of an image. In order to com-
press an image we begin by creating a matrix based off of the DST function.

3.1 Matrix

The DST functions allows us to create a matrix S, of nxn. This matrix is also
the inverse of itself. To create a two dimensional DST, multiply the image by
the S matrix. Here we assume Xg is the image.

Y = SXgS
−1

S−1 = S

Xg = SY S

Since S is it’s own inverse, and we multiply by an inverse to ”divide”, we
can solve the DST for Xg easily, undoing the DST.

3.2 Compressing an Image using DST

Using this discrete sin transform, we can filter out and remove high frequency
data, thus making the file size smaller and ”compressing” the image. This
is our Y value, a matrix that has been transformed. We then multiply this
transformation by our original 3 color matrices and reverse the DST using the
method shown above. We can then re concatenate these 3 matrices on top of
each other to form the compressed image. By changing our value for p, we can
adjust how much data we want to remove.

3.3 Compression Ratio

The compression ratio is the uncompressed size divided by the compressed size;
essentially by what factor was the file shrunk. We could not get the number of
non-zero terms to come out correctly, even using the built in MatLab function
nnz(), so for the purposes of this project we will write our images to files and
use the actual compression ratio, rather than non-zero term count. We can see
the compressed images for different values of p below:

9



Figure 17: Full Quality, P=1 Figure 18: P = 0.8

Figure 19: P = 0.5 Figure 20: P = 0.3

We tested many different values for p, some of which are displayed below:

For p = .5, the compression ratio is 5.8.

For p = .3, the compression ratio is 6.2.

p = .1, the compression ratio is 8.8.

After experimenting with different values for p, we guess that 0.4 is a good
balance between quality and file size, qualitatively. We started at p = 1, and it

10



stayed close in size until we move lower than p = 0.8 We couldn’t even notice
a difference in quality until about 0.6, where the file is already significantly
smaller. The difference starts to become relatively noticeable around .5, as seen
in the above figures, and 0.4 is what we settled on as the best considering the
trade offs.

4 Conclusion

Matrices have many uses, one of which can be image manipulation. This can be
useful for many reasons, including the compression of images to save file size.
We also learned that we can remove a fair bit of data before the image quality
decreases significantly. Today many companies such as Instagram implement
image compression to save hard drive space to accommodate for a large user-
base. And today for our friends, we have shown them how to do the same
techniques implemented by large companies using matrix transformations.

11


